Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mol Phylogenet Evol ; 173: 107509, 2022 08.
Article in English | MEDLINE | ID: mdl-35589052

ABSTRACT

Bald uakaris, genus Cacajao, are Amazonian primates currently classified as one species and four subspecies based on the patterns of pelage coloration. In this study, we test if their current taxonomy is represented by the phylogenetic relationship of the main lineages retrieved from molecular data. We included, for the first time, all bald uakari taxa in a mitochondrial (cytochrome b) and genome-wide (ddRAD) phylogenetic analyses. We also examined the pattern of pelage colouration in specimens from zoological collections. Having determined the number of lineages using Maximum Likelihood and the species tree using coalescent analyses, we test their divergence time using a Bayesian approach. While the cytochrome b analysis only recovered two clades, the ddRAD analysis supported the reciprocal monophyly of five lineages of bald uakaris, with all clades including only individuals with distinct and exclusive diagnostic phenotypic characters. We found that species diversification in Cacajao occurred during the last 300 Kya and may have been influenced by the formation of rivers and flooded forests in western Amazonia. We propose that the four bald uakari subspecies currently recognised can be upgraded to species level and we describe the white uakaris from the basin of the Rio Tarauacá as a new species.


Subject(s)
Pitheciidae , Animals , Bayes Theorem , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Genome , Phylogeny
2.
Biodivers Data J ; 8: e51100, 2020.
Article in English | MEDLINE | ID: mdl-32336926

ABSTRACT

BACKGROUND: Currently, seven dasyatid species have been described in the Mediterranean Sea: Bathytoshia lata, Dasyatis marmorata, Dasyatis pastinaca, Dasyatis tortonesei, Himantura uarnak, Pteroplatytrygon violacea and Taeniura grabata. Papaconstantinou (2014) listed four species of Dasyatidae occurring in Greece (P. violacea, D. pastinaca, D. tortonesei and D. centroura; the latter was a case of misidentification and it is currently identified as B. lata, according to genetic analysis). However, the marbled stingray (D. marmorata) was not amongst them. Here, the presence of D. marmorata was examined for the first time in Greece. NEW INFORMATION: The present study provides updated information on the geographical distribution of D. marmorata in the Eastern Mediterranean Sea. A juvenile male stingray was captured in February 2019, during an onshore survey in Maliakos Gulf, located in the central Aegean Sea, Greece. The ray was examined at the Fisheries laboratory of the Hellenic Centre for Marine Research (HCMR) in Athens and was identified as D. marmorata. Morphological characters were recorded and DNA barcoding was applied to confirm the species identification. The combination of the two methods verified the occurrence of the marbled ray in the Greek waters. This is the first record of D. marmorata from the Aegean Sea.

3.
Nat Commun ; 11(1): 1433, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32188850

ABSTRACT

Genomic evidence is increasingly underpinning that hybridization between taxa is commonplace, challenging our views on the mechanisms that maintain their boundaries. Here, we focus on seven catadromous eel species (genus Anguilla) and use genome-wide sequence data from more than 450 individuals sampled across the tropical Indo-Pacific, morphological information, and three newly assembled draft genomes to compare contemporary patterns of hybridization with signatures of past introgression across a time-calibrated phylogeny. We show that the seven species have remained distinct for up to 10 million years and find that the current frequencies of hybridization across species pairs contrast with genomic signatures of past introgression. Based on near-complete asymmetry in the directionality of hybridization and decreasing frequencies of later-generation hybrids, we suggest cytonuclear incompatibilities, hybrid breakdown, and purifying selection as mechanisms that can support species cohesion even when hybridization has been pervasive throughout the evolutionary history of clades.


Subject(s)
Anguilla/genetics , Hybridization, Genetic , Anguilla/classification , Animals , Evolution, Molecular , Fish Proteins/genetics , Gene Flow , Genome , Phylogeny
4.
Sci Rep ; 10(1): 1661, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32015388

ABSTRACT

Migratory movements in response to seasonal resources often influence population structure and dynamics. Yet in mobile marine predators, population genetic consequences of such repetitious behaviour remain inaccessible without comprehensive sampling strategies. Temporal genetic sampling of seasonally recurring aggregations of planktivorous basking sharks, Cetorhinus maximus, in the Northeast Atlantic (NEA) affords an opportunity to resolve individual re-encounters at key sites with population connectivity and patterns of relatedness. Genetic tagging (19 microsatellites) revealed 18% of re-sampled individuals in the NEA demonstrated inter/multi-annual site-specific re-encounters. High genetic connectivity and migration between aggregation sites indicate the Irish Sea as an important movement corridor, with a contemporary effective population estimate (Ne) of 382 (CI = 241-830). We contrast the prevailing view of high gene flow across oceanic regions with evidence of population structure within the NEA, with early-season sharks off southwest Ireland possibly representing genetically distinct migrants. Finally, we found basking sharks surfacing together in the NEA are on average more related than expected by chance, suggesting a genetic consequence of, or a potential mechanism maintaining, site-specific re-encounters. Long-term temporal genetic monitoring is paramount in determining future viability of cosmopolitan marine species, identifying genetic units for conservation management, and for understanding aggregation structure and dynamics.


Subject(s)
Sharks/genetics , Sharks/physiology , Animal Migration , Animals , Atlantic Ocean , Conservation of Natural Resources , Female , Gene Flow , Genetic Variation , Genetics, Population , Ireland , Male , Microsatellite Repeats , Population Density , Seasons , Spatio-Temporal Analysis
5.
Mol Ecol ; 28(8): 1946-1963, 2019 04.
Article in English | MEDLINE | ID: mdl-30714247

ABSTRACT

Selection forces that favour different phenotypes in different environments can change frequencies of genes between populations along environmental clines. Clines are also compatible with balancing forces, such as negative frequency-dependent selection (NFDS), which maintains phenotypic polymorphisms within populations. For example, NFDS is hypothesized to maintain partial migration, a dimorphic behavioural trait prominent in species where only a fraction of the population seasonally migrates. Overall, NFDS is believed to be a common phenomenon in nature, yet a scarcity of studies were published linking naturally occurring allelic variation with bimodal or multimodal phenotypes and balancing selection. We applied a Pool-seq approach and detected selection on alleles associated with environmental variables along a North-South gradient in western North American caribou, a species displaying partially migratory behaviour. On 51 loci, we found a signature of balancing selection, which could be related to NFDS and ultimately the maintenance of the phenotypic polymorphisms known within these populations. Yet, remarkably, we detected directional selection on a locus when our sample was divided into two behaviourally distinctive groups regardless of geographic provenance (a subset of GPS-collared migratory or sedentary individuals), indicating that, within populations, phenotypically homogeneous groups were genetically distinctive. Loci under selection were linked to functional genes involved in oxidative stress response, body development and taste perception. Overall, results indicated genetic differentiation along an environmental gradient of caribou populations, which we found characterized by genes potentially undergoing balancing selection. We suggest that the underlining balancing force, NFDS, plays a strong role within populations harbouring multiple haplotypes and phenotypes, as it is the norm in animals, plants and humans too.


Subject(s)
Behavior, Animal , Genetics, Population , Reindeer/genetics , Selection, Genetic/genetics , Alleles , Animal Migration , Animals , Genetic Drift , Genetic Markers/genetics , Genetic Variation/genetics , Haplotypes/genetics , Humans , Phenotype , Polymorphism, Genetic , Reindeer/physiology , Seasons
6.
Limnol Oceanogr ; 64(6): 2709-2724, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32655189

ABSTRACT

The globally distributed heterotrophic dinoflagellate Noctiluca scintillans (Macartney) Kofoid & Swezy is well known for its dense blooms and prominent displays of bioluminescence. Intriguingly, along the west coast of the USA its blooms are not bioluminescent. We investigated the basis for the regional loss of bioluminescence using molecular, cellular and biochemical analyses of isolates from different geographic regions. Prominent differences of the non-bioluminescent strains were: (1) the fused luciferase and luciferin binding protein gene (lcf/lbp) was present but its transcripts were undetectable; (2) lcf/lbp contained multiple potentially deleterious mutations; (3) the substrate luciferin was absent, based on the lack of luciferin blue autofluorescence and the absence of luciferin derived metabolites; (4) although the cells possessed scintillons, the vesicles that contain the luminescent chemistry, electron microscopy revealed additional scintillon-like vesicles with an atypical internal structure; (5) cells isolated from the California coast were 43% smaller in size than bioluminescent cells from the Gulf of Mexico. Phylogenetic analyses based on the large subunit of rDNA did not show divergence of the non-bioluminescent population in relation to other bioluminescent N. scintillans from the Pacific Ocean and Arabian Sea. Our study demonstrates that gene silencing and the lack of the luciferin substrate have resulted in the loss of a significant dinoflagellate functional trait over large spatial scales in the ocean. As the bioluminescence system of dinoflagellates is well characterized, non-bioluminescent N. scintillans is an ideal model to explore the evolutionary and ecological mechanisms that lead to intraspecific functional divergence in natural dinoflagellate populations.

8.
Fish Manag Ecol ; 26(1): 31-41, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-33244193

ABSTRACT

Understanding the population structure of tropical anguillids residing in the Pacific is vital for their conservation management. Here, the population genetic structure of five sympatric freshwater eels (Anguilla marmorata Quoy & Gaimard, A. megastoma Kaup, A. obscura Steindachner, A. reinhardtii Günther and A. australis Richardson) across 11 western South Pacific (WSP) islands was investigated based on partial nucleotide sequences of the mtDNA control region and the nuclear GTH2b genes of 288 newly collected samples jointly with existing sequences. WSP anguillids are characterised by overall high levels of genetic diversity. Both mtDNA and nuclear sequences provided no evidence for distinct geographic clines or barriers in any of the species across the WSP. The occurrence of admixed individuals between A. marmorata and A. megastoma was confirmed, and a new possible occurrence of a further species was revealed (A. interioris Whitley on Bougainville Island). All species showed evidence for demographic population growth in the Pleistocene, and a subsequent population reduction for A. megastoma. Common spawning grounds and mixing of larvae by ocean currents could promote the lack of pronounced isolation by distance, a finding that has significant implications for the future management of anguillids in the area.

9.
J Med Food ; 21(12): 1197-1203, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30311825

ABSTRACT

Type 2 diabetes mellitus (T2DM) is evolving to an epidemic of the modern world. T2DM is associated with a number of pathological complications, including cardiovascular disease that is mostly promoted by the increased oxidative stress in type 2 diabetic patients. We performed a randomized double-blind placebo-controlled trial to investigate the effectiveness of an individualized oral supplementation with α-lipoic acid (ALA), carnosine, and thiamine. For that purpose, 82 obese type 2 diabetic patients were randomly assigned to 2 groups, and were either supplemented daily with 7 mg ALA/kg body weight, 6 mg carnosine/kg body weight, and 1 mg thiamine/kg body weight or placebo for 8 weeks. An array of biochemical tests including the estimation of oxidative stress and platelet aggregation were performed at baseline and at follow-up. Moreover, the antiplatelet activity of each of the supplement's components was determined ex vivo at human and washed rabbit platelets. Glucose and HbA1c levels were significantly reduced after supplementation (135.7 ± 19.5 mg/dL vs. 126.5 ± 16.8 mg/dL and 8.3% ± 0.3% vs. 6.03% ± 0.58%, respectively, P < .05); however, insulin was significantly increased (3.6 ± 0.7 µIU/mL vs. 6.8 ± 0.2 µIU/mL, P < .05). The patients treated with the supplement recorded higher follow-up values for HOMA-IR and HOMA-ß, and a significant drop in serum hydroperoxide level. Only ALA inhibited platelets aggregation ex vivo through ADP, platelet activating factor, arachidonic acid, epinephrine, collagen, and thrombin pathways. Daily supplementation with an individualized ALA, carnosine, and thiamine supplement effectively reduced glucose concentration in type 2 diabetic patients, probably by increasing insulin production from the pancreas. In addition to that, the reduction of oxidative stress and inhibition of platelet aggregation could potentially provide greater cardiovascular protection. Further studies are needed to fine-tune the supplementation dose-response effects in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Dietary Supplements , Obesity, Morbid , Administration, Oral , Blood Glucose/metabolism , Carnosine/administration & dosage , Carnosine/therapeutic use , Diabetes Mellitus, Type 2/blood , Double-Blind Method , Female , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Surveys and Questionnaires , Thiamine/administration & dosage , Thiamine/therapeutic use , Thioctic Acid/administration & dosage , Thioctic Acid/therapeutic use , Treatment Outcome
10.
Evol Appl ; 10(2): 199-211, 2017 02.
Article in English | MEDLINE | ID: mdl-28127396

ABSTRACT

Ecosystem fragmentation and habitat loss have been the focus of landscape management due to restrictions on contemporary connectivity and dispersal of populations. Here, we used an individual approach to determine the drivers of genetic differentiation in caribou of the Canadian Rockies. We modelled the effects of isolation by distance, landscape resistance and predation risk and evaluated the consequences of individual migratory behaviour (seasonally migratory vs. sedentary) on gene flow in this threatened species. We applied distance-based and reciprocal causal modelling approaches, testing alternative hypotheses on the effects of geographic, topographic, environmental and local population-specific variables on genetic differentiation and relatedness among individuals. Overall, gene flow was restricted to neighbouring local populations, with spatial coordinates, local population size, groups and elevation explaining connectivity among individuals. Landscape resistance, geographic distances and predation risk were correlated with genetic distances, with correlations threefold higher for sedentary than for migratory caribou. As local caribou populations are increasingly isolated, our results indicate the need to address genetic connectivity, especially for populations with individuals displaying different migratory behaviours, whilst maintaining quality habitat both within and across the ranges of threatened populations.

11.
R Soc Open Sci ; 1(3): 140175, 2014 Nov.
Article in English | MEDLINE | ID: mdl-26064555

ABSTRACT

Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to overexploitation. This has driven investigations into the population genetic structure of large-bodied pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which are perhaps more representative of the biodiversity of the group. This study explores spatial population genetic structure of the small-spotted catshark (Scyliorhinus canicula), across European seas. The results show significant genetic differences among most of the Mediterranean sample collections, but no significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are likely to have persisted in a stable and structured environment during Pleistocene sea-level changes. Conversely, the Northeast Atlantic populations would have experienced major changes in habitat availability during glacial cycles, driving patterns of population reduction and expansion. The data also provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence, we suggest that patterns of connectivity are determined by trends of past habitat stability that provides opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of populations to fisheries and other stressors may differ across the range of species.

12.
Proc Biol Sci ; 278(1712): 1679-86, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21084352

ABSTRACT

The provenance of white sharks (Carcharodon carcharias) in the Mediterranean is both a conundrum and an important conservation issue. Considering this species's propensity for natal philopatry, any evidence that the Mediterranean stock has little or no contemporary immigration from the Atlantic would suggest that it is extraordinarily vulnerable. To address this issue we sequenced the mitochondrial control region of four rare Mediterranean white sharks. Unexpectedly, the juvenile sequences were identical although collected at different locations and times, showing little genetic differentiation from Indo-Pacific lineages, but strong separation from geographically closer Atlantic/western Indian Ocean haplotypes. Historical long-distance dispersal (probably a consequence of navigational error during past climatic oscillations) and potential founder effects are invoked to explain the anomalous relationships of this isolated 'sink' population, highlighting the present vulnerability of its nursery grounds.


Subject(s)
Animal Migration , Endangered Species , Sharks/physiology , Animals , DNA, Mitochondrial/chemistry , Genetic Variation , Geography , Haplotypes , Mediterranean Sea , Population Density , Population Dynamics , Sequence Analysis, DNA , Sharks/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...